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Abstract 

The analysis of pumping a swing has been done in the standing mode and seated mode in 

different ways using Mathematica. It's shown that the standing mode is equivalent to a 

parametric oscillator while the seated mode is equivalent in a sense to a driven oscillator. 

The description of both modes from a qualitative point of view is given. The other main 

differences between both modes are illustrated during the analysis.  
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1-Introduction 
 
A swing is a famous and an interesting tool that children like to play with. A swing consists mainly of a 

long rod ended with a seat on which the child can stand or sit while swinging. Normally friction is a major 

dissipative force that affects the motion of a swing causing it to decay gradually. So a child playing with a 

swing has to learn some pumping mechanism in order to keep the swing running. Not only can a child 

keep the swing running but he can also make the oscillation grow up. Surprising enough, those pumping 

schemes can even start a swing from the rest positions as experienced by children on the playground. 

Pumping means that the child keeps storing energy into the swing by performing some movements at 

certain positions. This energy by means of conservation of momentum is converted into kinetic energy. 

The mechanism of pumping may take several forms depending on the state of the child (standing on the 

swing or sitting.)  A child can pump from a standing position by periodically standing and squatting on the 

swing which results in periodic displacement of the center of mass up and down. This is modeled by a 

changing the length of the rod of the swing with time.  Another method is by leaning forward and 

backward periodically while sitting on the swing.Both schemes will be analysed in this paper.  

 
2- Pumping a swing from a standing position 
 
As mentioned in the introduction, the swing in this scheme is modeled as a pendulum having its length as 

a function of time. The child is modeled as a point mass at the end of the rod moving up and down. This 

motion is shown in figure (1).  

 

 
 

Figure (1) 

Neglecting the mass of the rod, the kinetic energy of the swing is 
2.

2
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2
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2
1 rmrmT += θ  and the potential 

energy is: ))cos(1( θ−= mgrV  and the Lagrangian becomes )cos(
2
1)(

2
1 2.

2
.

θθ mgrrmrmL ++=  after 

neglecting the constant term in the potential. There is a force of constraint represented by the tension in 

the rod in the r direction which forces the length of the swing to be not greater than the length of the rod. 
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This will introduce an unkown force of constraint in the equation of motion of r. The equation of motion 

for the angle θ – measured from the midpoint-  is : 

θθθ sin2
....

grr −=+ . As an initial investigation of this equation I tried to change the length periodically as 

a sin wave: )sin(0 tll ωα+= and scanned against the frequency ω, I found that the amplitude of the 

oscillation was actually amplified in a certain range of frequencies, but maximum amplification occurred 

when ω was 1.9 times the natural frequency of the swing 
l
g  as shown figure (1). The length of the 

swing was chosen to be 2 m ( that makes the natural frequency of the swing ω0 =2.2 rad/s) and  α to be 

0.25).   Setting (0) to be 0 to emulate the rest condition at 
.
θ )0(θ =0, I found that an amplification in the 

angle began to occur at pumping frequency of 4.2 rad/s (approximately double the natural frequency of the 

swing.) We notice that the oscillation is becoming unstable as time increases since this is not the realistic 

case (the child doesn’t move with a constant frequency but adjusts his motion according to the motion of 

the swing) and because I excluded the drag of the air and friction of the swing from this analysis. This 

proves that a swing can be pumped from very small initial perturbation by a continuous motion of the 

child in principle. This is called a parametric oscillator, where energy is pumped into the oscillator not by 

a force varying with time but by a variation in one of the parameters of the equation.  
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Figure (2) 
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Figure (3) 
 

I noticed by scanning the pumping frequency above this value(4.25 rad/sec) that the response of the swing 

becomes sensitive to the pumping frequency and periods of amplification and attenuation occur at 

frequencies that depend very sensitively on the pumping frequency. The response in figures (2), (3) 

corresponds to pumping frequencies that are .01 rad/s different from each other.  

The attenuation may be interpreted to be due to the gradual change of the frequency of the swing until a 

big phase shift is built between it and the pumping signal, we emphasize again that this model has a lot of 

approximation. A closer look at the response of the swing illustrates this fact. 
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Figure (4) 
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I tried to use a more realistic model where the child doesn’t move with a constant frequency but changes 
his motion according to the position of the swing, i.e )(0 θαCoslrl −== . The variation of the length in 
this case looks like:  
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Figure (5) 

In this case the equation of motion for the θ angle becomes   . As 

shown in figure (6), numerical solution of the equation of motion showed no amplification in θ. This is not 

surprising since the energy pumped by the child in one quarter cycle is restored in the next quarter cycle. 

θθθαθθα sin)(2)]([
2...

0 gSinCosl −=+−
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Figure (6) 

 

Now, coming to the most realistic model of the motion of the child in standing position that gave me the 

most practical results:  I defined a new exponential function that models the variation of r as a function of 

θ. The function is a multi-valued function since the length of the swing depends not only on the value of θ 

but on the direction of the change of θ with time as shown in figure (7). I can control the steepness of the 

change of the length around the mid-point by controlling the exponential growth rate.    
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Figure (7) 
 
 
An example of the amplification generated by this modulated length is shown in figure (8).  
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Figure (8) 

 
An interesting phenomenon was observed, which is that the smaller the initial angular velocity of the 

swing, the larger the threshold steepness of the variation of length needed to start the amplification 

process. The previous figure, is for initial angular velocity = 0.01 rad/sec.  For the same length variation 

function (same steepness) and initial angular velocity = .001 rad/sec we find the response given in figure 

(9).  
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Figure (9) 

 
For more detail on this point see Mathematica code in the Appendix.  
 
Now let’s try to figure out qualitatively how the movement of the child at the midpoint of the swing 

increases the height of the swing. As before, I will assume that the center of gravity (the child) is moving 

up and down but I’ll consider the extreme case where the child stands up instantaneously at the mid-point 

and squats instantaneously at the highest point. We can look at this problem from two perspectives: 

 
2.1 The conservation of angular momentum 

 
As shown in figure (10) the motion of the child causes an immediate change of the radius of oscillation at 

the point where the speed is maximum.  

 
Figure (10) 
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Conservation of angular momentum states that the angular speed should increase from the point B to B’ 

such that the angular momentum stays the same. So from the conservation of angular momentum we get 

 hence BBBB mrmr
.

2
'

.
2

' θθ = 2

'

.

.

)1(
BB

B

r
∆

−=
θ

θ  where ∆  is the difference between rB, rB’. From the 

conservation of energy, we can get '0θ (n), which is the maximum displacement in θ as a function of  

as:  
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•

θ

))('cos1()(
2
1

0'
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Hence the relation between the maximum angle '0θ  in two consecutive cycles n, n+1 

is
)(

)1(
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So beginning from an initial displacement angle 0θ  we can get the increase in the 0θ  as a function of the 

cycle number as follows: 

Since in one complete cycle, the maximum angular speed  increases by a factor: '

.

Bθ
4)1( −∆

−
Br  then 

8

0

0 )1(
))('cos1(

))1('cos1( −∆
−=

−
+−

Brn
n

θ
θ

. Solving recursively for '0θ  through this equation beginning from 

'0θ =0.00001 (approximate rest condition) I found that it grew very rapidly and that '0θ reached π only 

after 15 cycles !! Of course this is not a realistic model, and hence the nonrealistic results are not 

surprising.  
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Figure (11) 
 

2.2 Conservation of energy  
 
By considering the extreme case where the child moves instanteously up and down in the mid-point and 

extreme points respectively we can calculate how much energy is pumped into the swing per cycle. Let 
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the displacement of the child be . When the child stands up in the mid point he is pumping potential 

energy into the swing by doing work opposing to two forces : 

x∇

a- the gravitational force  xmgW ∇=∇ .

b- The centrifugal force x
l

mvW ∇=∇
2

 

Where v is the maximum velocity of the swing, and l can be taken to be the average length. 

While when the child sits down at the extreme point he is giving part of his potential energy in favor of the 

gravitational force only, the centrifugal force is zero since the velocity is zero. Hence 

xmgW ∇−=∇ . . Therefore we see that the energy stored in the swing in one cycle equals x
l

mv
∇

2
max2  

This will lead to the increase of the maximum velocity each cycle, and hence an exponential increase in 

the stored energy in the swing. A simple algebra shows that the increase in the maximum velocity in half 

cycle, )21)(()
2
1( 22

l
xnvnv ∇

+=+ . Hence in one complete cycle, the velocity increases by a factor 

)21(
l
x∇

+ . After n cycles, we find the velocity given in terms of the initial velocity is 

n

l
xvnv )21)(0()( ∇

+=  

By expressing the kinetic energy at the mid-point with the difference in potential energy expressed in 

terms of the maximum swinging angle we get:  ))(cos(1(][
2
1

0
2 nmglnmv θ−= and hence the maximum 

angle θ is given after n cycles in terms of the initial maximum displacement θ[0] as : 

n

l
xn 2

0

0 )21(
))0(cos(1(
))(cos(1( ∇

+=
−
−

θ
θ   or equivalently  2

0

0 )21(
))('cos1(

))1('cos1(
l
x

n
n ∇

+=
−

+−
θ

θ .  We notice that this result 

is different from the previous case ( from angular momentum considerations ) to a first order in 
l
x∇  by a 

factor 2 in the exponent !!  This is one conflicting result in this paper.  Using the same initial angle and 

displacement as in the previous case we see that the maximum angle increase with time as shown in figure 

(12) 
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Figure (12) 
 

We note in this discussion that the frame of the swing has no role in the pumping process, since the 

tension exerted from the hanging point doesn't appear in the equations and it's always normal to the 

velocity of the center of mass. However, it plays an important rule in fixing the swing to the ground, since 

without it the whole swing will be swinging in the opposite direction to the motion of the child to conserve 

the angular momentum.  

2.3  Another mode for pumping from a seated position 
 

Another mode of pumping the swing from a standing position is by leaning backward and forward while 

standing as shown in figure (13).  

 
Figure(13) 

The swinger is modeled by a single mass at the center of mass rotating around the lowest point of the 

swing independently. The angle between the swing and the swinger is called θ (I took it in the other 

direction ). The potential energy is given by )]()([ φθφ −+−= lCosLCosmgV  and the kinetic energy by 

 )(2)( 2222 φθφφθφ −+++= LllLT
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Hence the equation of motion in the φ direction is 

.  0)2(2)2(2)(22[)()( 2 =−−−+−−+−+ θφθθφθθφθφφθφ SinLlLlCoslLmglSinmgLSin

Simulating the motion of the swinger by a sinusoidal change using mathematica showed that this mode is 

capable to start the swing from rest but the oscillations are of constant amplitude and are not amplified 

exponentially like the previous case. 

 
3 Pumping a swing from a seated position 
 
Another scheme of pumping a swing, is by pumping from the seated position. This involves a sudden 

rotation of the rider's body when the swing momentarily comes to either of the two stops.  A model for the 

rider and the swing in this scheme is shown in figure (14).  

 
Figure (14) 

 
Similar to the double pendulum , with an additional mass, the potential energy of the three masses (P.E) 

= ))(())(( 31312211 φθφφφθφ +−−++−− CoslCoslmCoslCoslmCoslm  

And their kinetic energy (K.E)  = 

)]()(2)([
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Hence the Lagrangian can be written as 
 

 
where  

 
 
The equation of motion of the φ  angle is  
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-M I1 g Sin(φ(t))+N g Sin(φ(t)+θ(t))-I1 φ''(t)-I2(φ''(t)+θ''(t))-2 I1 N φ''(t) Cos(θ(t))-I1 N θ''(t)Cos(θ(t))m0 

 

When solving this equation numerically using Mathematica, I got a surprise. Beginning from a very small 

angular velocity', φ' (t)=.001 rad/sec, the angular displacement has already grown up. But unlike the 

standing position pumping scheme, the growth is a linear growth not an exponential growth.  

 

100 200 300 400

-1

-0.5

0.5

1

 
Figure (15) 

 
 
The θ(t) was taken in this simulation to be a constant value of .5 rad while φ(t) was increasing ( the swing 

moving to the right) and -0.5 rad/sec while φ(t) increasing. When I changed the values of θ(t) to be 0.7 

rad/sec, the oscillation has grown faster as expected. This is shown in figure (16) 
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Figure (16) 

 
 
A special case occurs when then we find that N=0 and the Lagrangian reduces to  03322 =− ImIm

)()(
2
1

2
1

1
2

..

2

2.

1 φθφφ gCosMlII +++ . The equation of motion then becomes :  

. It's clear that the pumping of the swing by changing θ periodically is 

equivalent to a driven harmonic oscillator unlike the pumping from a standing position which is equivalent 

to a parametric oscillator.  

..

21

..

21 )()( θφφ ISinMglII −=++
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By modeling the variation of θ by a fixed frequency, I found that the oscillation was amplified ( linearly ) 

and succession of amplification and attenuation occurred due to the phase difference between the driving θ 

and the oscillating φ as in the case of parametric amplification. 
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Figure (17) 
 

Unlike the standing position pumping, the maximum amplification occurred near the natural frequency of 

the swing ( not double the natural frequency ) approximately at 
è!!!!!!!!!g l −.13ê .    

As we did with the standing position, trying to figure out qualitatively what the physical cause of pumping 

is, we find that the source of pumping energy is in the sudden change of the angular momentum at the 

highest points. Considering the idealized model, we notice that the change of the orientation of the body of 

the rider at the highest points represents an increase in the angular momentum in the direction that makes 

the swing go back. The sudden stop of the motion of the rider forces the swing to go back faster to 

conserve the total angular momentum. That wouldn't happen of course if the swing wasn't fixed to the 

ground. 

Now let's search for the optimal point of leaning forward and backward. Up to now, we considered that 

the bending of the child's body takes place at the highest points only. When I considered the other extreme 

case in which the child bends his body at the lowest point where the velocity if the swing is maximum, I 

found for my surprise that no amplification happened at all!!  

I tried also to to make the  but found no amplification also!! φθ =

 One advantage of this pumping scheme (from seated position) is that it's more efficient in starting the 

swing from rest position. Leaning forward and backward, will cause the swing to move in the other 

direction to conserve angular momentum even it was absolutely at rest. This is not the case in pumping by 

standing and squatting.  

An interesting observation in this mode is that I noticed, experimentally, is that the oscillation of the swing 

increases when the swinger stretches his leg in the forward motion and bends them in the backward 

motion. This supports the conclusion that the increase of the θ increases the growth rate of the oscillations.  

To compare the pumping efficiency of both techniques from energy point of view, it's obvious that when 

excluding dissipation both schemes will have the same power efficiency. Another point of comparison is 
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the growth rate. This means which pumping scheme allows the child to pump a larger amount of energy 

per cycle? By comparison of figures (2), (16), for the case of a periodic change of the length and the 

leaning angle, it's obvious that the seated position grows much faster the standing position. But from my 

experiment on the swing, I felt more tired when I pumped the swing from the standing position than the 

case of seated pumping!! This is considered another conflicting result.  

 
4- Conclusion 
The two different pumping schemes has been illustrated and analyzed in this paper. While the standing 

position pumping is equivalent to a parametric oscillator, the seated position is equivalent to a driven 

oscillator. Although the oscillation grows up exponentially for the standing position and linearly for the 

seated position, it was shown that the pumping from seated position is more effective in terms of 

oscillation growth rate. 

The actual pumping mechanisms followed on the playground, I guess, are combinations of both 

techniques since children , specially experienced ones, lean forward and backward while standing and 

squatting. This may imply that the best pumping scheme is neither of the two, but a combination of them. 
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Appendix I  List of conflicting results 
 

1- The difference between the growth rate of the standing position pumping when analysed from a 
conservation of energy and conservation of angular momentum points of view.  

2- The analysis showed that the amount of energy pumped per cycle by the seated pumping is higher 
than that of the standing position pumping. My experience says the inverse.  

3-  
 


